A Comparative Analysis of Fertility Differentials in Ghana and Nigeria

Oluwaseun Olatoregun, Adeniyi Francis Fagbamigbe, Odunayo Joshua Akinyemi, Oyindamola Bidemi Yusuf, Elijah Afolabi Bamgboye

Abstract

Nigeria and Ghana are the most densely populated countries in the West African sub-region with fertility levels above world average. Our study compared the two countries’ fertility levels and their determinants as well as the differentials in the effect of these factors across the two countries. We carried out a retrospective analysis of data from the Nigeria and Ghana Demographic Health Surveys, 2008. The sample of 33,385 and 4,916 women aged 15-49 years obtained in Nigeria and Ghana respectively was stratified into low, medium and high fertility using reported children ever born. Data was summarized using appropriate descriptive statistics. Factors influencing fertility were identified using ordinal logistic regression at 5% significance level. While unemployment significantly lowers fertility in Nigeria, it wasn’t significant in Ghana. In both countries, education, age at first marriage, marital status, urban-rural residence, wealth index and use of oral contraception were the main factors influencing high fertility levels. (Afr J Reprod Health 2014; 18[3]: 36-47)

 

Keywords: Fertility differential, Educational level, ordinal logistic regression, Nigeria, Ghana   

Résumé

Le Nigeria et le Ghana sont les pays les plus peuplés de la sous-région d’Afrique de l'Ouest avec des taux de fécondité supérieurs à la moyenne mondiale. Notre étude a comparé les taux de fécondité des deux pays et de leurs déterminants ainsi que les différences dans l'effet de ces facteurs dans les deux pays. Nous avons fait une analyse rétrospective des données de l'Enquête démographique de la santé du Nigeria et du Ghana, 2008. L'échantillon de 33 385 et des 4916 femmes âgées de 15-49 ans obtenus au Nigeria et au Ghana respectivement a été stratifié en basse, moyenne et haute en se servant des enfants  qui ont été déclarés comme jamais nés. Les données ont été résumées en utilisant des statistiques descriptives appropriées. Les facteurs qui influent sur la fécondité ont été identifiés par la régression logistique ordinale au niveau de signification de 5%. Alors que le chômage diminue de manière significative la fertilité au Nigeria, ce n'était pas significatif au Ghana. Dans les deux pays, l'éducation, l'âge au premier mariage, l'état, civil, le milieu de domicile, l'indice de la richesse et de l'utilisation de la contraception orale ont été les principaux facteurs qui influent sur les niveaux de fécondité élevés. (Afr J Reprod Health 2014; 18[3]: [1]6-47)

 

Mots-clés: écart de fécondité,  niveau de l'éducation,  régression logistique ordinale Nigeria, Ghana  


[1] .

It is true that human fertility is a function of a variety of factors. A proper understanding of these factors would be of paramount importance in 

Full Text:

PDF

References

Ministry of Planning Economy and Empowerment

Tanzania, R. National Population Policy. (2006).

Nohara, A. M. Review and appraisal of population policies in the developed countries. Jinko Mondai Kenkyu 160, 23-43 (1981).

Rosenberg, M. India's Population,

about.com/od/obtainpopulationdata/a/indiapopulation. htm> (2011).

Bankole, A. Desired Fertility and Fertility Behavior Among the Yoruba of Nigeria: A Study of Couple Preferences and Subsequent Fertility. Population Studies 49, 317-328 (1995).

Bankole, A. & Olaleye, D. O. Do Marital Partners have different Reproductive Preferences in Sub-Saharan Africa?, (IUSSP, Liege, Belgium: International Union for the Scientific Study of Population (IUSSP), 1993).

Bankole, A. & Singh, S. Couples’ fertility and Contraceptive Decision-Making in Developing Countries: Hearing the man’s Voice. International Family Planning Perspectives 24, 15-24 (1998).

Nii-Amoo Dodoo, F. Marriage Type and Reproductive Intentions: A Comparative Study in Sub-Sahara

Africa. Journal of marriage and the Family 60, 232-

(1998).

Gebreselassie, T. & Mishra, V. Spousal Agreement on waiting Time to next Birth in Sub-Saharan Africa. (Number 35, DHS Working Paper, 2007).

DeRose, L. F., Nii-Amoo Dodoo, F. & Patil, V. Fertility Desires and Perceptions of Power in Reproductive

Conflict in Ghana. Gender and Society 16, 53-73 (2002).

WHO. World Health Organization (WHO) 2008. (2008).

CIA. Central Intelligence Agency US, (2011).

GDHS. Ghana Demographic and Health Survey. (Measure DHS, 2008).

NDHS. Nigeria Demographic and Health Survey (NPC, Federal Republic of Nigeria Abuja, Nigeria, Measure DHS and Nigeria Population Commission (NPC), ICF Macro Calverton, Maryland, USA, 2008).

PRB. Population Reference Bureau, The World’s Women and Girls 2011 Datasheet, (2011).

UNDP. United Nations Development Programme 2010 Global Report. (2010).

UNFPA. United Nations Population Fund 2010 Report. (2010).

Ushie, M. A. Fertility Differentially in Urban and Rural Nigeria: A Comparative Study of Calabar and Bendi Communities in Cross River State, Nigeria. (2009).

World.Bank. Sub-Saharan Africa: From Crisis to Sustainable Growth. , pp 48-49. (The World Bank, Washington, D. C, 1989).

Measuredhs. Fertility levels, (2010).

Guengant, J.-P. The proximate determinants during the fertility transition, (2006).

United Nations. Assumptions underlying the 2010 revision, (2012).

Hosmer, D. & Lemeshow, S. Applied Logistic Regression (John Wiley & Sons, Inc, 2000).

Long, J. S. & Freese, J. Regression Models for Categorical and Limited Dependent Variables Using Stata. Vol. Second Edition (Stata Press, 2006).

Wang, X. C., Kockelman, K. M. & Lemp, J. D. The dynamic spatial multinomial probit model: Analysis of land use change using parcel-level data. Journal of Transport Geography 24, 77-88 (2012).

Greene, W. H. Econometric Analysis. Vol. 7th ed

(Prentice Hall, 2012).

Treiman, D. J. Quantitative Data Analysis: Doing Social Research to Test Ideas. (Jossey-Bass, 2009).

Adhikari, R. Demographic, Socio economic and cultural factors affecting fertility differentials in Nepal. BMC pregnancy and childbirth 10, 19 (2010).

Alene, G. D. & Worku, A. Differentials of fertility in North and South Gondar zones, northwest Ethiopia: A comparative cross-sectional study. BMC Public Health 8, 397-398 (2008).

Lee, B. S. & Louis, G. P. The Influence of Rural-Urban

Migration on Migrant's Fertility in Korea, Mexico and Cameroon. Population and Development Review 12, 3-26 (1993).

Mboup, G. & Tulshi, S. Fertility Levels, Trends, and Differentials. (Calverton, MD: Macro International, 1998).

Muhuri, P. K., Blanc, A. K. & Rutstein, S. O.

Socioeconomic Differentials in Fertility, 1994).

Retherford, R. D. & Thapa, S. Fertility in Nepal, 19812000: Level, Trend, and Componant of Change.

(2003).

Sisouphanthong, B., Xaovana, V., Louangvixa, B. & Chanthalanouvong, T. Lao Reproductive Health

Survey. (Lao department of statistics, 2000).

Martin, T. C. Women’s Education and Fertility: Results from 26 Demographic and Health Surveys. Studies in Family Planning, NY 26, 187-202 (1995).

Kraudal, O. A Search for Aggregate-level Effects of

Education on Fertility, using data from Zimbabwe”, Demographic Research, 3. www.demographicresearch.org (2000).

McCrary, J. & Royer, H. The Effect of Female Education on Fertility and Infant Health: Evidence from School Entry Policies Using Exact Date of Birth. Am Econ Rev 101, 158-195 (2011).

Fitaw, Y., Berhane, Y. & Worku, A. Differentials of fertility in rural Butajira. Ethiop J Health Dev 17, 1725 (2003).

Refbacks

  • There are currently no refbacks.