ORIGINAL RESEARCH ARTICLE

Menopausal symptom management: Fezolinetant's varied doses provide effective relief for vasomotor symptoms in women - A meta-analysis of 3291 participants

DOI: 10.29063/ajrh2024/v28i3.11

Nursing department, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia; Nursing College, Taibah University, Saudi Arabia; Nursing College, Jazan University, Jazan, Saudi Arabia; College of Public Health, Jazan University, Saudi Arabia; Nursing Department, College of Applied Medical Science, University of Hafr Al Batin, Saudi Arabia; Department of Nursing, Faculty of Applied Medical Sciences Buraydah College, Kingdom of Saudi Arabia; Department of Nursing, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Saudi Arabia; Department of medical laboratory technology- college of medical applied sciences- Jazan university, Saudi Arabia; Al-Rayan Private College of Health Sciences and Nursing, Saudi Arabia; Department of Nursing Practice, College of Nursing, Um Alqura University, Saudi Arabia

*For Correspondence: Email: hazzminno345@gmail.com

Abstract

Menopause represents the physiological transition when a woman's reproductive period ends associated with a variety of symptoms, including vasomotor symptoms, such as night sweats and hot flashes. This systematic review and meta-analysis aimed to assess the effectiveness and safety of oral Fezolinetant for treating vasomotor symptoms associated with menopause. Five electronic databases were searched from their inception until May 2023. Via the Cochrane risk of bias tool, two reviewers assessed the studies' quality. The primary outcomes were a decrease in VMSs frequency and severity and safety outcomes at 4 and 12 weeks. Data were extracted and then analyzed using RevMan software. This meta-analysis included six trials with a total of 3291 women that compared Fezolinetant to a placebo in the treatment of menopausal VMSs. After 4 and 12 weeks of therapy, fezolinetant at 30 mg QD or 45 mg QD substantially decreased the frequency and severity of VMSs per 24 hours compared to placebo. Fezolinetant at 90 mg BID, 30 mg QD, or 45 mg QD did not show a significant difference in the rate of treatment-emergent adverse events (TEAEs), headache, and TEAEs leading to permanent discontinuation compared to placebo. Fezolinetant proves to be a successful and well-tolerated remedy for menopausal women suffering from VMSs. Notably, the 45 mg daily dosage over 12 weeks exhibited significant efficacy. Nonetheless, extensive future trials are necessary to ascertain its long-term safety, effectiveness, and relative potency compared to alternative VMS treatments like hormone therapy.

Keywords: Menopause, vasomotor symptoms, fezolinetant, meta-analysis, safety

Résumé

La ménopause représente la transition physiologique lorsque la période de reproduction d'une femme se termine, associée à divers symptômes, notamment des symptômes vasomoteurs, tels que des sueurs nocturnes et des bouffées de chaleur. Cette revue systématique et méta-analyse visaient à évaluer l’efficacité et l’innocuité du Fezolinetant oral pour traiter les symptômes vasomoteurs associés à la ménopause. Cinq bases de données électroniques ont été consultées depuis leur création jusqu'en mai 2023. Via l'outil Cochrane sur le risque de biais, deux examineurs ont évalué la qualité des études. Les principaux critères de jugement étaient une diminution de la fréquence et de la gravité des SVM ainsi que des critères de sécurité à 4 et 12 semaines. Les données ont été extraites puis analysées à l'aide du logiciel RevMan. Cette méta-analyse comprenait six essais portant sur un total de 3 291 femmes comparant Fezolinetant à un placebo dans le traitement des SVM ménopausiques. Après 4 et 12 semaines de traitement, le fézolinetant à la dose de 30 mg une fois par jour ou de 45 mg une fois par jour a considérablement réduit la fréquence et la gravité des SMV toutes les 24 heures par rapport au placebo. Le fézolinetant à la dose de 90 mg deux fois par jour, de 30 mg une fois par jour ou de 45 mg une fois par jour n'a pas montré de différence significative dans le taux d'événements indésirables survenus pendant le traitement.
Elhusein et al.

African Journal of Reproductive Health March 2024; 28 (3): 100

Mots-clés: Ménopause, symptômes vasomoteurs, fézolinetant, méta-analyse, sécurité

Introduction

Menopause is a physiological transition that occurs when a woman's reproductive years come to an end. This phase is characterized by concomitant physiological and hormonal alterations that may give rise to a range of symptoms, including vasomotor symptoms (VMSs), such as night sweats and hot flashes. VMSs are prevalent among women undergoing menopause, with an estimated incidence rate of up to 80%. However, the prevalence of VMSs among menopausal women is well-established, the optimal treatment for these symptoms remains debatable within the scientific community.

For numerous years, hormone therapy (HT) has stood out as the most efficacious treatment for VMSs. Nonetheless, the employment of this intervention has decreased owing to the heightened susceptibility to breast cancer, stroke, and cardiovascular disease linked to its usage. Selective serotonin reuptake inhibitors (SSRIs), gabapentinoids, and serotonin-norepinephrine reuptake inhibitors (SNRIs) are non-hormonal treatment options for VMSs. However, these options may be associated with side effects such as fatigue, queasiness, and vertigo.

Fezolinetant, another newly developed treatment for menopausal VMSs, works as an NK3R antagonist. The hypothalamus, which expresses NK3R, plays a pivotal role in controlling thermoregulatory responses and vasomotor sensitivity during menopause. Fezolinetant reported to reduce the incidence and severity of VMSs by suppressing the function of neurokinin B (NKB). The hypothalamic NKB/NK3R pathway is theorized to be involved in Fezolinetant's therapeutic efficacy and vital in controlling the body's temperature regulation during menopause. Fezolinetant targets the neuroendocrine processes that contribute to the occurrence of VMSs, as opposed to the neurotransmitter activity that SSRIs and SNRIs target.

In a randomized controlled trial (RCT), the frequency of moderate to severe hot flashes decreased more with Fezolinetant than with a placebo. In another phase 2b RCT, VMSs were significantly decreased with Fezolinetant compared to placebo. Fezolinetant was well-tolerated since no serious side effects were observed in both trials. Hence, multiple trials were published with some side effects and different doses and regimens. Also, they have assessed the drug efficacy through various outcomes measured at different time points.

Therefore, our meta-analysis aimed to assess the effectiveness and safety of different oral dosages of Fezolinetant after multiple intervals for the treatment of VMSs associated with menopause, pooling the published RCTs data in order to synthesize stronger evidence.

Methods

Cochrane Handbook for Systematic Reviews and Interventions and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards were adhered to throughout this meta-analysis.

Search strategy

Electronic databases, including Embase, PubMed, Web of Science (WOS), SCOPUS, and Cochrane Library, were searched with the use of keywords and MeSH phrases as follows: (Fezolinetant OR ESN364) AND ("Postmenopausal Period" OR "Period, Postmenopausal" OR "Post-Menopause" OR "Post Menopause" OR "Post-Menopauses" OR "Post-menopausal Period" OR "Period, Post-menopausal” OR "Post menopause" OR "Menopausal period" OR "Period after menopause" OR “menopause”)). English-language studies published till May 2023 were the only considered articles. Two separate reviewers examined the titles and abstracts of the publications to determine the relevancy. Then, we assessed the full texts of the relevant publications to decide on the final inclusion.
RCTs were included if all of the following criteria were met: (1) patients: postmenopausal women with vasomotor symptoms; (2) Intervention and comparator: Fezolinetant with a placebo; (3) Outcomes: efficacy- and safety-related outcomes. Non-randomized studies were ruled out. If the two reviewers disagreed, it was addressed and resolved by mutual agreement.

Data extraction and study outcomes

Using a preformulated data extraction form, two reviewers extracted data from the included studies independently. The following data were extracted: study design, sample size, patient VMSs details, participant characteristics, doses and follow-up length, conclusion reported, and adverse events. Disagreements between the two reviewers were settled by discussion and consensus. If required, a third reviewer was engaged for arbitration. The study outcomes included changes in the severity and frequency of moderate to severe VMSs per 24 hours and Menopause-Specific Quality of Life (MENQOL) after 4 and 12 weeks of therapy.

Results

Study selection and characteristics

Five databases were searched to find 195 records, and 66 duplicates were removed. After looking over titles and abstracts of the rest 129 records, 113 were excluded. Sixteen reports were further looked at to assess if they were eligible. Two were excluded because they were not in English, three were not RCTs, three were meeting papers, and two did not have full texts. Finally, the meta-analysis included 3291 women from 6 articles reporting 5 RCTs.

The average age of the included females in the studies was between 53.3 and 56.8 years. Most women who participated in the studies were White; the percentages ranged from 62.2% to 100%, and the average BMI went from 25.1 to 29.3 kg/m2. The number of women who smoke at the time of the studies ranged from 7.0% to 24.4%.

Quality assessment

The Risk of Bias (ROB) tool, version 2, was used to assess the bias of the included studies in this meta-analysis. The tool evaluates five domains: bias caused by the following: randomization technique, alterations from planned interventions, missing outcome data, outcome assessment, and the selection of the reported result. For each domain, the risk of bias was rated as low, moderate, or high. Two reviewers independently evaluated each study’s bias risk. Any differences were addressed via group discussion.

Efficacy outcomes

1. Change in efficacy outcomes after 4 weeks

Change in the frequency of VMSs/24 hours.

According to an analysis of three RCTs, including 738 women, Fezolinetant at a dosage of 30 mg QD revealed a reduction in the frequency of VMSs/24 hours compared to placebo after four weeks [MD = -1.89 (-2.45, -1.32), \(P < 0.00001 \)]. Also, Results from 2 RCTs including 331 female participants showed that 45 mg QD of Fezolinetant significantly reduced the frequency of VMSs/24 hours compared to placebo after 4 weeks [MD = -2.29 (-2.89, -1.69), \(P < 0.00001 \)]. The data in both analyses showed homogeneity, with P-values of 0.89 and 0.44 and 0 I2 values, respectively.
Figure 1: PRISMA flow diagram

Figure 2: Risk of bias summary
In three RCTs involving 738 women, a daily dose of Fezolinetant at 30 mg significantly reduced the severity of VMSs/24 hours compared to placebo after 4 weeks [MD = -0.16 (-0.25, -0.08), P = 0.0002]. Similarly, in 2 RCTs involving a total of 331 women, daily 45 mg dose of fezolinetant significantly reduced the severity of VMSs/24 hours compared to placebo after 4 weeks [MD = -0.23 (-0.32, -0.14), P < 0.00001]. Both analyses demonstrated homogeneity, with P-values of 0.51 and 0.27, and I2 values of 0 and 17%, respectively.

Supplementary Figure 1: Change from baseline in the frequency of VMSs/24 hours after 12 weeks

Change in the severity of VMSs/24 hours.

In three RCTs involving 738 women, a daily dose of Fezolinetant at 30 mg significantly reduced the frequency of VMSs/24 hours compared to placebo after 4 weeks [MD = -2.13 (-2.71, -1.56), P < 0.00001]. A similar effect was observed in two RCTs involving a total of 664 women with Fezolinetant administered at a daily dose of 45 mg [MD = -0.57 (-0.76, -0.39), P < 0.00001]. Both analyses revealed homogeneous data with P-values of 0.69 and 0.87, and 0 I2 values, respectively.

Change from baseline in MENQOL total score.

Daily 30 mg dose of Fezolinetant was found to significantly reduce the MENQOL total score compared to placebo in three randomized controlled trials involving 738 women [MD = -0.45 (-0.63, -0.27), P < 0.00001]. A similar effect was observed in two RCTs involving a total of 664 women with Fezolinetant administered at a daily dose of 45 mg [MD = -0.57 (-0.76, -0.39), P < 0.00001]. Both analyses revealed homogeneous data with P-values of 0.69 and 0.87, and 0 I2 values, respectively.

Change in efficacy outcomes after 12 weeks.

Change in the frequency of VMSs/24 hours.

After 12 weeks, Fezolinetant at a daily dose of 30 mg QD significantly reduced the frequency of VMSs/24 hours compared to placebo in three RCTs that involved 613 women [MD = -2.13 (-2.71, 1.56), P < 0.00001].
1.54), \(P < 0.00001 \). Similarly, in two RCTs that involved a total of 580 women, daily 45 mg dose of Fezolinetant showed a significant reduction in the frequency of VMSs/24 hours compared to placebo after 4 weeks \([\text{MD} = -2.54 \ (-3.16, -1.91), P < 0.00001]\). The data in both analyses exhibited homogeneity, as indicated by the P-values of 0.72 and 0.99, and 0 I² values, respectively.

Supplementary Figure 1

Figure 5: Change from baseline in the MENQOL total score after 4 weeks

In three RCTs involving 613 women, a daily dose of Fezolinetant at 30 mg significantly reduced the severity of VMSs/24 hours compared to placebo after 4 weeks \([\text{MD} = -0.2 \ (-0.3, -0.09), P = 0.0004]\). Similarly, in two RCTs involving a total of 571 women, daily 45 mg dose of Fezolinetant significantly decreased the severity of VMSs/24 hours compared to placebo after 4 weeks \([\text{MD} = -0.4 \ (-0.5, -0.3), P < 0.0001]\).

Figure 6: Change in the severity of VMS/24 hours over 4 weeks

- **Figure 4:** Change from baseline in the severity of VMSs/24 hours after 4 weeks
- **Figure 5:** Change from baseline in MENQOL total score after 4 weeks
Elhusein et al.

Menopausal symptom management

African Journal of Reproductive Health March 2024; 28 (3) 105

Supplementary Figure 2: Change from baseline in the severity of VMSs/24 hours after 12 weeks

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Fezolinetant</th>
<th>Control</th>
<th>Mean Difference</th>
<th>Nt</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>1.4.1 Fezolinetant 30 QD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraser et al. 2020</td>
<td>-0.6</td>
<td>0.92</td>
<td>33</td>
<td>-0.8</td>
<td>0.97</td>
</tr>
<tr>
<td>Johnson et al. 2023</td>
<td>-0.64</td>
<td>0.69</td>
<td>133</td>
<td>-0.40</td>
<td>0.71</td>
</tr>
<tr>
<td>Lessman et al. 2023</td>
<td>-0.6</td>
<td>0.57</td>
<td>131</td>
<td>-0.37</td>
<td>0.59</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>297</td>
<td></td>
<td></td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity</td>
<td>CHM = 0.59, df = 2 (P = 0.70), I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 3.11 (P = 0.0012)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.24 (-0.34, -0.13), P < 0.00001. Both analyses demonstrated homogeneity of the data, with P-values of 0.74 and 0.41, and I² values of 0, respectively. Supplementary Figure 2

Supplementary Figure 3: Change from baseline in MENQOL total score after 12 weeks

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Fezolinetant</th>
<th>Control</th>
<th>Mean Difference</th>
<th>Nt</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>1.4.2 Fezolinetant 45 QD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson et al. 2023</td>
<td>-0.77</td>
<td>0.72</td>
<td>146</td>
<td>-0.40</td>
<td>0.71</td>
</tr>
<tr>
<td>Lessman et al. 2023</td>
<td>-0.57</td>
<td>0.66</td>
<td>146</td>
<td>-0.37</td>
<td>0.59</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>292</td>
<td></td>
<td></td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity</td>
<td>CHM = 0.67, df = 1 (P = 0.41), I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 4.37 (P < 0.00001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.24 (-0.34, -0.13), P < 0.00001. Both analyses demonstrated homogeneity of the data, with P-values of 0.74 and 0.41, and I² values of 0, respectively. Supplementary Figure 2

Safety outcomes

Treatment-emergent adverse events (TEAE).

There was insignificant difference observed in the rate of TEAE between Fezolinetant and placebo at doses of 90 mg BID, 30 QD, or 45 QD, as follows: [RR = 0.86 (0.68, 1.09), P = 0.22], [RR = 1.05 (0.97, 1.13), P = 0.22], and [RR = 1 (0.93, 1.09), P = 0.9], respectively. All three analyses revealed homogeneity of the data, with P-values of 0.87, 0.21, and 0.76, and I² values of 0, 34%, and 0, respectively. Supplementary Figure 4

TEAEs leading to permanent discontinuation.

There was insignificant difference in the rate of TEAE leading to permanent drug discontinuation between Fezolinetant and placebo at doses of 90 mg BID, 30 QD, or 45 QD, with the following risk ratios and 95% confidence intervals: [RR = 3.65 (0.62,
Supplementary Table 1: Summary of the included studies

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Site</th>
<th>Study registration</th>
<th>Definition of menopause</th>
<th>Episodes of moderate/severe VMSs</th>
<th>Fezolinetant Doses</th>
<th>Primary outcomes</th>
<th>Follow-up</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depypere et al. 2019</td>
<td>Belgium</td>
<td>EudraCT (2015-002578-20)</td>
<td>The definition was based on various criteria, including spontaneous amenorrhea for 12 consecutive months, spontaneous amenorrhea for 6 months with biochemical evidence of menopause (FSH levels above 40 IU/L), spontaneous amenorrhea for 3 months with FSH levels above 40 IU/L and estradiol levels below 0.21 nmol/L, or bilateral oophorectomy performed at least 6 weeks before screening.</td>
<td>≥7 episodes of moderate/severe VMSs (per day over a period of 7 consecutive days)</td>
<td>90 mg BID</td>
<td>Change from baseline to week 12 in total VMS</td>
<td>12 weeks</td>
<td>“Fezolinetant had demonstrated a rapid and significant reduction of moderate-to-severe VMS, indicating its potential as an effective nonhormonal treatment option for menopausal women.”</td>
</tr>
<tr>
<td>Fraser et al. 2020</td>
<td>US</td>
<td>NCT03192176</td>
<td>Menopause was defined as spontaneous amenorrhea for 12 consecutive months, spontaneous amenorrhea for 6 months with biochemical criteria of menopause (FSH > 40 IU/L), or spontaneous amenorrhea for 3 months with FSH > 40 IU/L and estradiol (E2) < 0.21 nmol/L, or bilateral oophorectomy 6 weeks prior to screening.</td>
<td>≥50 moderate/severe VMS episodes per week based on seven consecutive days of VMS recordings from any point during the 35-day</td>
<td>15, 30, 60, or 90 mg BID, or 30, 60, or 120 mg QD</td>
<td>Reduction in moderate/severe VMS frequency and severity</td>
<td>12 weeks</td>
<td>“Fezolinetant was found to be effective and well-tolerated in reducing moderate-to-severe VMS in a rapid manner.”</td>
</tr>
<tr>
<td>Johnson et al. 2023</td>
<td>US, Canada, Latvia, Poland, Spain, and the UK</td>
<td>NCT04003142</td>
<td>Menopause was defined as spontaneous amenorrhea for at least 12 consecutive months, spontaneous amenorrhea for at least 6 months with biochemical confirmation of menopause (FSH > 40 IU/L), or bilateral oophorectomy at least 6 weeks prior to the screening visit (with or without hysterectomy).</td>
<td>A minimum average of 7 moderate-to-severe VMS/day</td>
<td>30 or 45 mg QD</td>
<td>Reduction in moderate/severe VMS frequency and severity</td>
<td>12 weeks + 40 weeks extension</td>
<td>“The administration of fezolinetant at daily doses of 30 and 45 mg demonstrated efficacy and safety in alleviating moderate-to-severe VMS in menopausal women.”</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>NCT Number</td>
<td>Menopause Definition</td>
<td>VMS Episodes</td>
<td>Treatment</td>
<td>Outcomes</td>
<td>Duration</td>
<td>Summary</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Elhusein et al.</td>
<td>USA, Canada, Czech Republic, Hungary, Poland, Spain, and the UK</td>
<td>NCT04003155</td>
<td>Menopause was defined as (FSH > 40 IU/L) or bilateral oophorectomy at least 6 weeks prior to the screening visit, with or without hysterectomy.</td>
<td>≥7 episodes of moderate/severe VMSs (per day.)</td>
<td>30 or 45 mg QD</td>
<td>Reduction in moderate/severe VMS frequency and severity</td>
<td>12 weeks + 40 weeks extension</td>
<td>“The data suggested that fezolinetant was a viable non-hormonal option for the treatment of vasomotor symptoms in menopausal women.”</td>
</tr>
<tr>
<td>Neal-Perry et al. 2023</td>
<td>USA, Canada, Czechia, Latvia, Poland, Spain, Ukraine, and the UK</td>
<td>NCT04003389</td>
<td>Menopause was defined as spontaneous amenorrhea lasting 12 or more consecutive months, spontaneous amenorrhea lasting 6 or more months with a FSH level higher than 40 IU/L, or bilateral oophorectomy that occurred 6 or more weeks before the screening visit.</td>
<td>NR</td>
<td>30 or 45 mg QD</td>
<td>Safety outcomes</td>
<td>52 weeks</td>
<td>“The results of this study provided confirmation of the safety and tolerability of fezolinetant over a period of 52 weeks and supported its further development.”</td>
</tr>
<tr>
<td>Santoro et al. 2020</td>
<td>US</td>
<td>NCT03192176</td>
<td>Menopause was defined as spontaneous amenorrhea for 12 consecutive months, spontaneous amenorrhea for 6 months with biochemical criteria of menopause (FSH > 40 IU/L), or spontaneous amenorrhea for 3 months with FSH > 40 IU/L and estradiol (E2) < 0.21 nmol/L, or bilateral oophorectomy 6 weeks prior to screening.</td>
<td>≥50 moderate/severe VMS episodes per week based on seven consecutive days of VMS recordings from any point during the 35-day</td>
<td>15, 30, 60, or 90 mg BID, or 30, 60, or 120 mg QD</td>
<td>Quality of life</td>
<td>12 weeks</td>
<td>“Oral fezolinetant resulted in higher responder rates compared to placebo and led to greater improvements in quality of life (QoL) and another patient-reported outcome (PRO) measures.”</td>
</tr>
</tbody>
</table>

Abbreviations: FSH: Follicle-stimulating hormone, VMS: vasomotor symptoms NR: not reported, BID: twice per day, QD: Once per day, US: United States, UK: United Kingdom
Supplementary Table 2: Baseline characteristics of included studies

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Study arms</th>
<th>Sample</th>
<th>Age, years, mean (SD)</th>
<th>Race, White, n (%)</th>
<th>BMI, mean kg/m², mean (SD)</th>
<th>Current smoker, n (%)</th>
<th>Baseline Frequency/24 h of moderate/severe VMS, mean (SD)</th>
<th>Baseline Severity/24 h of moderate/severe VMS, mean (SD)</th>
<th>Previously used hormone therapy, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deppere et al.</td>
<td>90 mg BID</td>
<td>43</td>
<td>53.3 (4.03)</td>
<td>42 (97.7)</td>
<td>25.1 (4.71)*</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>2019</td>
<td>Placebo</td>
<td>44</td>
<td>53.7 (4.25)</td>
<td>44 (100)</td>
<td>26.5 (6.15)*</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Fraser et al. 2019</td>
<td>15 mg BID</td>
<td>45</td>
<td>53.7 (5.0)</td>
<td>37 (82.2)</td>
<td>29.3 (4.3)</td>
<td>10 (22.2)</td>
<td>11.1 (7.1)</td>
<td>2.5 (0.3)</td>
<td>1 (2.2)</td>
</tr>
<tr>
<td>and Santoro et al.</td>
<td>30 mg BID</td>
<td>43</td>
<td>53.9 (3.8)</td>
<td>31 (71.2)</td>
<td>28.3 (4.0)</td>
<td>5 (11.6)</td>
<td>9.9 (4.6)</td>
<td>2.4 (0.3)</td>
<td>1 (2.3)</td>
</tr>
<tr>
<td>2020</td>
<td>60 mg BID</td>
<td>45</td>
<td>54.6 (5.0)</td>
<td>28 (62.2)</td>
<td>29.1 (5.2)</td>
<td>8 (17.8)</td>
<td>9.5 (4.0)</td>
<td>2.5 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>90 mg BID</td>
<td>44</td>
<td>54.9 (4.0)</td>
<td>36 (81.8)</td>
<td>27.3 (4.6)</td>
<td>4 (9.1)</td>
<td>9.3 (3.6)</td>
<td>2.4 (0.3)</td>
<td>3 (6.8)</td>
</tr>
<tr>
<td></td>
<td>30 mg QD</td>
<td>43</td>
<td>52.7 (3.8)</td>
<td>31 (72.1)</td>
<td>28.8 (4.0)</td>
<td>3 (7.0)</td>
<td>11.2 (6.4)</td>
<td>2.4 (0.3)</td>
<td>2 (4.7)</td>
</tr>
<tr>
<td></td>
<td>60 mg QD</td>
<td>45</td>
<td>55.0 (4.9)</td>
<td>34 (75.6)</td>
<td>28.3 (4.4)</td>
<td>11 (24.4)</td>
<td>9.4 (2.7)</td>
<td>2.4 (0.3)</td>
<td>3 (6.7)</td>
</tr>
<tr>
<td></td>
<td>120 mg QD</td>
<td>44</td>
<td>56.8 (4.4)</td>
<td>30 (68.2)</td>
<td>28.8 (4.9)</td>
<td>3 (6.8)</td>
<td>9.7 (3.7)</td>
<td>2.5 (0.3)</td>
<td>1 (2.3)</td>
</tr>
<tr>
<td>Placebo</td>
<td>43</td>
<td>54.8 (5.5)</td>
<td>30 (69.8)</td>
<td>27.3 (4.8)</td>
<td>3 (7.0)</td>
<td>9.7 (3.5)</td>
<td>2.5 (0.3)</td>
<td>4 (9.3)</td>
<td></td>
</tr>
<tr>
<td>Johnson et al. 2023</td>
<td>30 mg QD</td>
<td>166</td>
<td>53.9 (4.9)</td>
<td>131 (78.9)</td>
<td>27.94 (18.1-37.6)*</td>
<td>34 (20.5)</td>
<td>11.23 (4.9)</td>
<td>2.4 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45 mg QD</td>
<td>167</td>
<td>54.3 (5.4)</td>
<td>132 (79.0)</td>
<td>27.91 (18.0-37.5)*</td>
<td>34 (20.4)</td>
<td>11.79 (8.3)</td>
<td>2.4 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>167</td>
<td>54.7 (4.6)</td>
<td>134 (80.2)</td>
<td>28.16 (18.6-38.0)*</td>
<td>35 (21.0)</td>
<td>11.59 (5.0)</td>
<td>2.4 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Lederman et al. 2023</td>
<td>30 mg QD</td>
<td>174</td>
<td>54.2 (4.9)</td>
<td>148 (86)</td>
<td>28.1 (4.8)</td>
<td>22 (13)</td>
<td>10.8 (5.1)</td>
<td>2.4 (0.3)</td>
<td>31 (18)</td>
</tr>
<tr>
<td></td>
<td>45 mg QD</td>
<td>173</td>
<td>54.2 (5.1)</td>
<td>141 (82)</td>
<td>28.3 (4.4)</td>
<td>22 (13)</td>
<td>10.6 (4.1)</td>
<td>2.4 (0.4)</td>
<td>30 (18)</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>175</td>
<td>54.7 (4.8)</td>
<td>142 (81)</td>
<td>28.2 (4.3)</td>
<td>22 (13)</td>
<td>10.5 (3.4)</td>
<td>2.4 (0.4)</td>
<td>33 (19)</td>
</tr>
<tr>
<td>Neal-Perry et al. 2023</td>
<td>45 mg QD</td>
<td>609</td>
<td>54.7 (4.8)</td>
<td>479 (78.8)</td>
<td>28.4 (4.7)</td>
<td>116 (19.0)</td>
<td>NR</td>
<td>NR</td>
<td>91 (15.3)</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>610</td>
<td>54.9 (4.8)</td>
<td>502 (82.3)</td>
<td>28.2 (4.6)</td>
<td>117 (19.2)</td>
<td>NR</td>
<td>NR</td>
<td>115 (19.4)</td>
</tr>
</tbody>
</table>

Abbreviations: BMI: body mass index, VMS: vasomotor symptoms NR: not reported, BID: twice per day, QD: Once per day.

(*) sign indicates ranges.
Supplementary Figure 4: Incidence of treatment-emergent adverse events (TEAE)

Supplementary Figure 5: Incidence of TEAEs leading to permanent discontinuation
Supplementary Figure 6: Incidence of headache

21.58, $P = 0.15$, [RR = 1.3 (0.85, 1.97), $P = 0.22$], and [RR = 1.03 (0.66, 1.62), $P = 0.89$], respectively. All three analyses demonstrated homogeneity of the data, with P-values of 0.77, 0.95, and 0.13, and I² values of 0, 0, and 51%, respectively. *Supplementary Figure 5*

Headache

There was insignificant difference in the rate of headache between Fezolinetant and placebo at doses of 90 mg BID, 30 QD, or 45 QD, with the following risk ratios and 95% confidence intervals: [RR = 1.01 (0.41, 2.53), $P = 0.98$], [RR = 1 (0.74, 1.36), $P = 1$], and [RR = 0.99 (0.72, 1.35), $P = 0.95$], respectively. All three analyses showed homogeneous data, with P-values of 0.49, 0.42 and 0.75, and I² values of 0.

Supplementary Figure 6

Discussion

This is the first systematic review and meta-analysis to our knowledge to evaluate the efficacy of Fezolinetant in reducing the frequency and severity of VMSs and improving MENQOL in women going through menopause. The analysis included six RCTs involving 3291 women. Results indicated that compared to placebo, Fezolinetant increased MENQOL overall score and decreased frequency of moderate to severe VMSs when taken at a daily dosage of 30 or 45 mg for 4 weeks or 12 weeks. The data were homogeneous in all analyses.

A new family of medications called selective neurokinin 3 receptor (NK3R) antagonists has showed promise in treating menopausal symptoms including hot flashes without using hormones. These drugs target the neurokinin 3 receptor, which is involved in regulating the release of luteinizing hormone (LH) and gonadotropin-releasing hormone (GnRH) from the pituitary gland. Inhibiting NK3R, these medications decrease GnRH and LH levels, which in turn decreases ovarian output of estrogen and progesterone, hence alleviating menopausal symptoms like hot flashes. Pavinetant and Fezolinetant have shown efficacy in reducing hot flashes; Fezolinetant appears to have a more favorable safety profile. The most commonly reported side effects were mild to moderate in intensity, including headache, fatigue, and nausea. Other reported side effects were diarrhea, vomiting, dizziness, and abnormal liver function tests. However, no serious adverse events related to
Pavinetant have been reported in the trials conducted so far 28. Fezolinetant may provide an alternative to HT for certain women who would rather not utilize hormones because of personal preference or having medical history such as a history of breast cancer as Fezolinetant is not associated with an increased danger of HT-related health problems such as breast cancer, endometrial cancer, or cardiovascular disease 34. Also, SSRIs and SNRIs may have limited effectiveness in treating VMSs and may even be associated with certain adverse effects. A systematic review and meta-analysis of RCTs found that while SSRIs and SNRIs were associated with a modest reduction in VMS frequency, they were not significantly better than placebo in reducing VMS severity or improving the quality of life 35. Additionally, these medications may be associated with side effects such as sexual dysfunction, nausea, and weight gain, which may further worsen the quality of life for some women 36.

The present study offers several notable strengths. Firstly, this is the first meta-analysis to evaluate Fezolinetant vs placebo for the treatment of VMSs in women beyond menopause. Secondly, the study employed a comprehensive search strategy to identify all relevant studies in multiple databases, thus increasing the likelihood of including all pertinent studies. Thirdly, the inclusion of a large sample size of 3291 women in the meta-analysis provides a substantial sample to produce valid results. Also, our study reports homogeneous data, indicating consistency among the included studies in terms of their results and minimizing the likelihood of heterogeneity bias. Additionally, the data were analyzed after 4 and 12 weeks of treatment and for three different doses of Fezolinetant, with consistent results, thus enhancing the evidence base. Finally, most domains of the included studies were rated as having a low risk of bias, enhancing the findings’ validity.

The findings of this meta-analysis should be interpreted with caution as well due to some limitations. Firstly, the limited diversity of participants, with the majority being White, may restrict the generalizability of the findings to other racial/ethnic groups. Secondly, the short duration of treatment in all included studies may not be sufficient to assess the long-term efficacy and safety of Fezolinetant. Finally, there is a risk of bias as most of the included studies’ authors were either employed at Astellas Pharma or received a grant from the company, which may lead to selective reporting bias.

In conclusion, the present study provides evidence that Fezolinetant is an effective and well tolerated treatment option for women with menopause experiencing VMSs. The efficacy of the drug is more prominent with the larger dose (45 mg daily) for the longer follow-up period (12 weeks). These findings may be used to inform clinical practice and improve the quality of life for women with menopause. However, larger future trials with more varied populations are required to assess Fezolinetant’s especially long-term safety and effectiveness. Additionally, studies that compare the effectiveness of different doses of Fezolinetant with other treatments for VMSs, such as hormone therapy, would be useful for guiding clinical decision-making.

Conclusions

Fezolinetant is an effective and well tolerated treatment option for women with menopause experiencing VMSs. The efficacy of the drug is more prominent with the larger dose (45 mg daily) for the longer follow-up period (12 weeks). However, larger future trials with longer follow-up periods are required to assess Fezolinetant’s long-term safety and effectiveness and to compare between different doses with other treatments available for VMSs, such as hormone therapy.

Conflict of interest

The authors declare no conflicts of interest regarding the publication of this systematic review and meta-analysis.

Funding

"This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors."

Ethical considerations

This systematic review and meta-analysis involved the analysis of previously published studies and did not directly involve human or animal subjects.
Ethical approval was not required for this research. However, the authors followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to ensure the ethical conduct and transparent reporting of this study.

Author contributions

The contributions of each author are as follows: AME, HAF, MH, MMA, IAI, HKM and MAA contributed to the study design, data collection, analysis, and interpretation, and wrote the manuscript. HHA, AAE, AEB, MHA, NHA, IHM, RAM, and AAA assisted with data analysis and interpretation, and critically reviewed and revised the manuscript. FAA, EMA, NIA, ADA, EAA, EAI, SYA, RSA, and PB contributed to the literature search, and data extraction, and critically reviewed the manuscript. All authors read and approved the final version of the manuscript.

References

23. Sterne JAC, Savović J, Page MJ and Elbers RG, Blencowe Elhusein et al. Menopausal symptom management – 2024; 28 (3) 113

